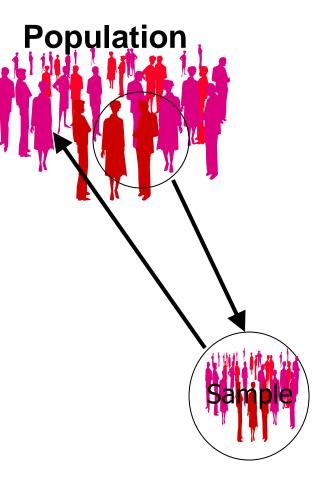
# T test


#### Prof. Dr Sami Abdo Radman

## Types of Ttest: (Students t test

- Two sample t-test (independent sample t test)
- Paired T test (dependent sample t-test
- One sample T test

#### Inferential Statistics

- Two ways to generalize from samples to populations
  - Estimation of parameters (Confidence Interval, CI)
  - Hypothesis testing (Test of significance, p value)
- Purpose
  - Make decisions about population characteristics



#### Two sample t-test (independent sample t test)

- Hypothesis testing (Tests of statistical significance)
- Difference in mean
- Variables:
   ✓ Continues variable
   ✓ Grouping variable

• A significance test uses data from a sample to show the likelihood that a hypothesis about a population is true

- T test answers Questions like:
- Is there difference in mean cholesterol level between smokers and non smokers?
   ✓ Test variable: cholesterol level (continuous variable)
- ✓ Groups : smokers , non-smokers (categorical)

- Hypothesis: there is difference in cholesterol level between the two groups ( $\mu$  1≠  $\mu$  2
- Null hypothesis : there is no difference in cholesterol level between the two groups ( $\mu$ 1 =  $\mu$  2)

- Is there difference in mean hemoglobin level between urban and rural children?
- Test variable: hemoglobin level continuous
- Groups : urban and rural children categorical
- Hypothesis: there is difference in hemoglobin level between the two groups  $(\mu \ 1 \neq \mu \ 2$
- Null hypothesis : there is no difference in hemoglobin level between the two groups ( $\mu 1 = \mu 2$ )

- does a new treatment reduce blood pressure more than an existing treatment?
- The null hypothesis: mean blood pressure is the same in the two treatment groups (no difference)
- The alternative hypothesis is that mean blood pressure is different in the two treatment groups (there is difference)

### Statistical test :

• Statistical test :

is there a real difference or the difference is due to chance ??

• Statistical test

we can decide to reject or accept the null hypothesis  $\rightarrow$  decide to accept or reject the hypothesis

- P value < 0.05  $\rightarrow$  reject the null  $\rightarrow$  accept the hypothesis
- P value > 0.05  $\rightarrow$  accept the null  $\rightarrow$  reject the hypothesis

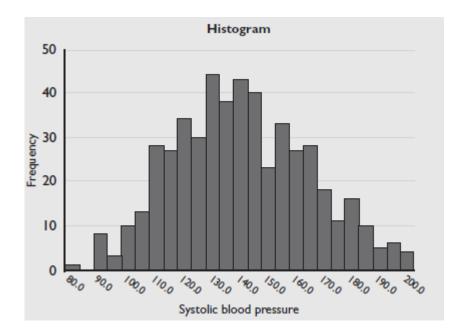
• P value < 0.05  $\rightarrow$  reject the null  $\rightarrow$  accept the hypothesis  $\rightarrow$ There is statistically significant difference

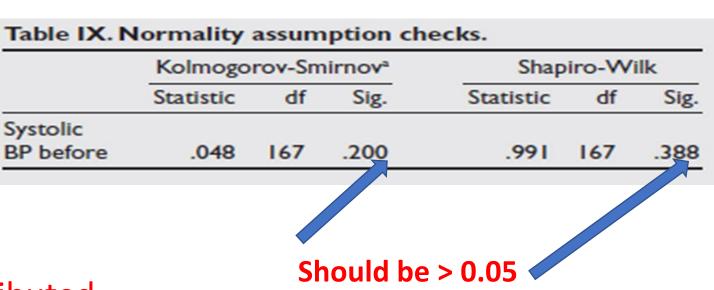
- P value  $\geq 0.05 \rightarrow$  accept the null  $\rightarrow$  reject the hypothesis  $\rightarrow$
- There is no statistically significant difference
- P value is the probability that the null hypothesis is true
- P value indicate wether the difference is a reall difference or due to chance

## Steps in doing a statistical test

- 1. Specify the hypothesis of interest as a null and alternative hypothesis.
- 2.Collect data and enter data to software (eg. SPSS)
- 2. Decide what statistical test is appropriate.
- 3. Use the test to calculate the P value.
- 4. accept/reject the null  $\rightarrow$  accept/reject the hypothesis
- Write conclusion

#### Two sample t-test (independent sample t test)


- Compare mean between two independent groups
- eg:
- Compare mean SBP between two independent groups (males and females)
- Hypothesis: there is difference in SBP between the two groups ( $\mu$  1≠  $\mu$  2
- Null hypothesis : there is no difference in SBP between the two groups ( $\mu$ 1 =  $\mu$  2)

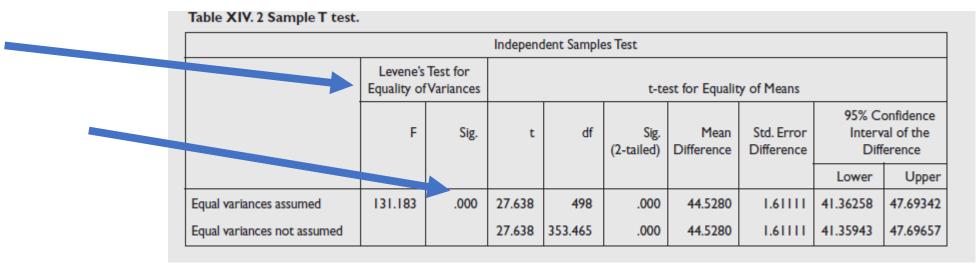

### Assumptions

- Dependent variable is continuous
- Two groups are independent
- Normal distribution of SBP
- Homogeneity of variance (variances are equal)

### Assumptions: normality

• The dependent variable must be continuous and normally distributed

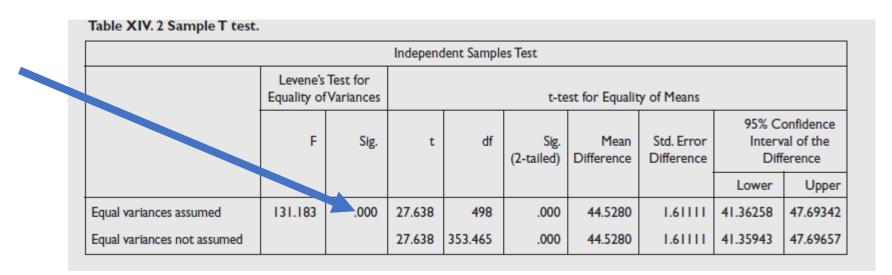





If p value >  $0.05 \rightarrow$  normally distributed If p value < $0.05 \rightarrow$  not normally distributed

#### Assumptions.

Homogeneity of variance *(The population variances are equal).* The Levene's Test for equality of variances


- The Levene's Test for equality of variances ;
- The Null hypothesis is: Equal Variances assumed (no differences between variances)
- the hypothesis is : there is difference between variance (variances are not equal)



•Assumptions.

Homogeneity of variance (The population variances are equal). The Levene's Test for equality of variances

- We want p value to be not significant
- If p value not sig. (>0.05)  $\rightarrow$  variances are equal (variances are homogenous)
- If p is sig. (<0.05)  $\rightarrow$  variances are not equal
- The Sig value (given in the 3rd column) shows that the p<0.05→ variances are not equal → assumption is violated</li>



- If the p value in the third column is significant → there is differences in variance → the assumption is violated
- So we should go the other option  $\rightarrow$  our p value will be in the last row

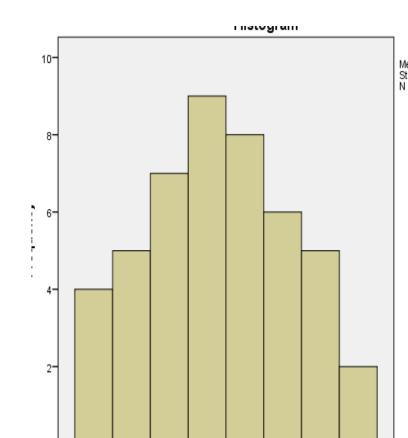
|                             |                                     |        | Independ | dent Sample | es Test            |                   |                          |          |                                    |
|-----------------------------|-------------------------------------|--------|----------|-------------|--------------------|-------------------|--------------------------|----------|------------------------------------|
|                             | Levene's T<br>Equality of V         |        |          |             | t-te               | est for Equalit   | y of Mans                |          |                                    |
|                             | Levene's Ter<br>Equality of Va<br>F | F Sig. | t        | df          | Sig.<br>(2-tailed) | Mean<br>Differenr | Std. Error<br>Difference | Interv   | onfidence<br>val of the<br>ference |
|                             |                                     |        |          |             |                    |                   |                          | Lower    | Upper                              |
| Equal variances assumed     | 131.183                             | .000   | 27.638   | 498         | .000               | 44.5280           | 1.61111                  | 41.36258 | 47.69342                           |
| Equal variances not assumed |                                     |        | 27.638   | 353.465     | .000               | 44.5280           | 1.61111                  | 41.35943 | 47.69657                           |

### Example

- Depression score was measured in males (n=17) and females (n=29).
- Is there difference in mean depression score between males and females?
- Hypothesis: there is difference
- Null: there is no difference
- We will conduct independent t test:

| depression | gender |
|------------|--------|
| 3.00       | 1.00   |
| 3.00       | 2.00   |
| 5.00       | 1.00   |
| 2.00       | 1.00   |
| 3.00       | 1.00   |
| 4.00       | 1.00   |
| 7.00       | 2.00   |
| 2.00       | 1.00   |
| 4.00       | 2.00   |
| 7.00       | 1.00   |
| 5.00       | 2.00   |
| 3.00       | 1.00   |
| 4.00       | 1.00   |
| 8.00       | 2.00   |
| 7.00       | 2.00   |

### Normality


#### P value > $0.05 \rightarrow$ depression score is normally distributed

#### **Tests of Normality**

|            | Kolm      | <mark>ogorov-Smi</mark> | rnov <sup>a</sup> | Shapiro-Wilk |    |      |  |
|------------|-----------|-------------------------|-------------------|--------------|----|------|--|
|            | Statistic | df                      | Sig.              | Statistic    | df | Sig. |  |
| depression | .106      | 46                      | .291*             | .958         | 46 | .095 |  |

\*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction



### Depression score among males and females

Levene's Test for Equality of Variances Equal variances were assumed (p=0.094)

|            |                                | Levene's Tes<br>of Vari |      | t-test for Equality of Means |        |                     |                    |                          |                          |                           |
|------------|--------------------------------|-------------------------|------|------------------------------|--------|---------------------|--------------------|--------------------------|--------------------------|---------------------------|
|            |                                |                         |      |                              |        | 0: (0               | Maan               |                          | 95% Confide<br>of the Di | ence Interval<br>fference |
|            |                                | F                       | Sig. | t                            | df     | Sig. (2-<br>tailed) | Mean<br>Difference | Std. Error<br>Difference | Lower                    | Upper                     |
| depression | Equal variances<br>assumed     | 2.933                   | .094 | -2.052                       | 44     | .046                | -1.14620           | .55855                   | -2.27189                 | 02051                     |
|            | Equal variances not<br>assumed |                         |      | -1.944                       | 31.037 | .061                | -1.14620           | .58963                   | -2.34869                 | .05630                    |

Independent Samples Test

#### Depression score among males and females

|            |        |    | Group Statistics    |                   |                    |
|------------|--------|----|---------------------|-------------------|--------------------|
|            | gender | Ν  | Mean                | Std.<br>Deviation | Std. Error<br>Mean |
| depression | male   | 19 | <mark>4.6316</mark> | 2.19116           | .50269             |
|            | female | 27 | <mark>5.7778</mark> | 1.60128           | .30817             |

# Is there difference in mean depression score between males and females

|          | Group Statistics    |    |                     |                   |                    |  |  |  |  |  |  |  |
|----------|---------------------|----|---------------------|-------------------|--------------------|--|--|--|--|--|--|--|
|          | gender              | N  | Mean                | Std.<br>Deviation | Std. Error<br>Mean |  |  |  |  |  |  |  |
| depressi | male                | 19 | <mark>4.6316</mark> | 2.19116           | .50269             |  |  |  |  |  |  |  |
| on       | <mark>female</mark> | 27 | <mark>5.7778</mark> | 1.60128           | .30817             |  |  |  |  |  |  |  |

|            |                                | _                       | In                       | dependent S | amples Test |                   |                       |            |                       |                    |  |
|------------|--------------------------------|-------------------------|--------------------------|-------------|-------------|-------------------|-----------------------|------------|-----------------------|--------------------|--|
|            |                                | Levene's Tes<br>of Vari | t for Equality<br>iances |             |             | t-tes             | st for Equality       | of Means   |                       |                    |  |
|            |                                | _                       |                          |             |             | Sig. (2-          | Mean                  | Std. Error |                       |                    |  |
|            |                                | F                       | Sig.                     | t           | df          | tailed)           | Difference            | Difference | Lower                 | <mark>Upper</mark> |  |
| depression | Equal variances<br>assumed     | 2.933                   | <mark>.094</mark>        | -2.052      | 44          | <mark>.046</mark> | <mark>-1.14620</mark> | .55855     | <mark>-2.27189</mark> | <mark>02051</mark> |  |
|            | Equal variances<br>not assumed |                         |                          | -1.944      | 31.037      | <mark>.061</mark> | -1.14620              | .58963     | -2.34869              | .05630             |  |

#### Conclusion

- P value is significant (p=0.046) → reject the null hypothesis → accept the hypothesis
- There is a statistically significant difference in mean depression score between males (4.6±2.19) and females (5.77±1.6), (p=0.046)
- the mean difference is -1.136 with a 95%CI -2.27 , -.020

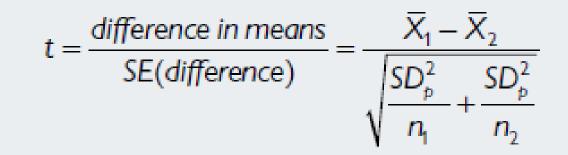
|   | Group Statistics |                   |    |                     |           |            |  |  |  |
|---|------------------|-------------------|----|---------------------|-----------|------------|--|--|--|
| • |                  | -                 |    |                     | Std.      | Std. Error |  |  |  |
|   |                  | gender            | N  | Mean                | Deviation | Mean       |  |  |  |
|   | depressi         | <mark>male</mark> | 19 | <mark>4.6316</mark> | 2.19116   | .50269     |  |  |  |
|   | on               | female            | 27 | <mark>5.7778</mark> | 1.60128   | .30817     |  |  |  |

- What about the 95%CI of the difference?
- Mean difference is -1.146 with a 95%CI -2.27 , -0.020 (not include zero)

|            |                                |       | In                                                                   | dependent S | Samples Test |                   |                        |            |                                       |                    |
|------------|--------------------------------|-------|----------------------------------------------------------------------|-------------|--------------|-------------------|------------------------|------------|---------------------------------------|--------------------|
|            |                                |       | ene's Test for Equality of<br>Variances t-test for Equality of Means |             |              |                   |                        |            |                                       |                    |
|            |                                |       |                                                                      |             |              | Sig. (2-          | Mean                   | Std. Error | 95% Confide<br><mark>of the Di</mark> |                    |
|            |                                | F     | Sig.                                                                 | t           | df           | tailed)           | Difference             | Difference | Lower                                 | Upper              |
| depression | Equal variances<br>assumed     | 2.933 | <mark>.094</mark>                                                    | -2.052      | 44           | <mark>.046</mark> | - <mark>1.14620</mark> | .55855     | <mark>-2.27189</mark>                 | <mark>02051</mark> |
|            | Equal variances not<br>assumed |       |                                                                      | -1.944      | 31.037       | <mark>.061</mark> | -1.14620               | .58963     | -2.34869                              | .05630             |

#### Table

#### Association between socio-demographic factors and depression


|        |      | Depression |         |
|--------|------|------------|---------|
|        | Mean | SD         | P value |
| Gender |      |            |         |
| Male   | 4.63 | 2.19       |         |
| Female | 5.77 | 1.6        | 0.046   |

- What does degree of freedom (df) tell us
- df = sample size 2 ( number of groups)
- df= (n1 + n2) 2 or : (n1-1) + (n2-1)
- If df = 44  $\rightarrow$  sample size = 46

|            |                                |       | Inc                                                               | dependent S | amples Test |         |            |            |          |            |                          |  |
|------------|--------------------------------|-------|-------------------------------------------------------------------|-------------|-------------|---------|------------|------------|----------|------------|--------------------------|--|
|            |                                |       | vene's Test for<br>lity of Variances t-test for Equality of Means |             |             |         |            |            |          |            |                          |  |
|            |                                |       |                                                                   |             |             |         |            | Sig. (2-   | Mean     | Std. Error | 95% Confide<br>of the Di |  |
|            |                                | F     | Sig.                                                              | t           | df          | tailed) | Difference | Difference | Lower    | Upper      |                          |  |
| depression | Equal variances<br>assumed     | 2.933 | .094                                                              | -2.052      | 44          | .046    | -1.14620   | .55855     | -2.27189 | 02051      |                          |  |
|            | Equal variances not<br>assumed |       |                                                                   | -1.944      | 31.037      | .061    | -1.14620   | .58963     | -2.34869 | .05630     |                          |  |

- What is <mark>t</mark> statistic :
- It is the statistic of t test and it is used with degree of freedom to compute p value

|            |                                | _     | In                                                             | dependent S | amples Test   |                     |                          |                          |          | -      |
|------------|--------------------------------|-------|----------------------------------------------------------------|-------------|---------------|---------------------|--------------------------|--------------------------|----------|--------|
|            |                                |       | 's Test for Equality of Variances t-test for Equality of Means |             |               |                     |                          |                          |          |        |
|            |                                |       |                                                                |             |               | Otd Freeze          | 95% Confide<br>of the Di |                          |          |        |
|            |                                | F     | Sig.                                                           | t           | df            | Sig. (2-<br>tailed) | Mean<br>Difference       | Std. Error<br>Difference | Lower    | Upper  |
| depression | Equal variances<br>assumed     | 2.933 |                                                                | -2.052      | <mark></mark> | .046                | -1.14620                 | .55855                   | -2.27189 |        |
|            | Equal variances not<br>assumed |       |                                                                | -1.944      | 31.037        | .061                | -1.14620                 | .58963                   | -2.34869 | .05630 |



where  $\overline{X}_1, \overline{X}_2$  are the means,  $SD_p$  is the pooled standard deviation calculated from the group SDs,  $SD_1$  and  $SD_2$  (see following equation), and  $n_1, n_2$  are the totals in the two groups.

$$SD_p = \sqrt{\frac{(n_1 - 1)SD_1^2 + (n_2 - 1)SD_2^2}{n_1 + n_2 - 2}}$$

t follows a Student's t distribution with  $n_1 + n_2 - 2$  degrees of freedom. P values are obtained from tabulated values of the t distribution or a computer program.

# • Paired T test

#### Paired T test

- It analyses mean difference in a paired sample
- Used to compare mean before and after :
- for example In a group of patients, SBP was measured today and then after three weeks
- There is one sample (one group) and two means (before and after)

- Hypothesis
- The mean change is not equal zero (there is change) (there is difference) (mean before ≠ mean after)

• Null hypothesis The mean change or difference is zero (there is no difference) (there is no change) (mean before = mean after)

### Assumption for the Paired T test:

- Assumption for the Paired T test:
- Groups are dependent
- The data are continuous and normally distributed
- The differences between the before & after is normally distributed
- Equal variances

• Eg weight before intervention and three months after intervention among 218 women

|    | 🛷 weight1 | 🔗 weight2 |
|----|-----------|-----------|
| 1  | 72.00     | 42.00     |
| 2  | 44.00     | 30.00     |
| 3  | 40.00     | 28.00     |
| 4  | 58.00     | 42.00     |
| 5  | 46.00     | 14.00     |
| 6  | 40.00     | 24.00     |
| 7  | 64.00     | 30.00     |
| 8  | 60.00     | 58.00     |
| 9  | 46.00     | 46.00     |
| 10 | 42.00     | 40.00     |
| 11 | 58.00     | 46.00     |
| 12 | 50.00     | 38.00     |
| 13 | 48.00     | 44.00     |
| 14 | 58.00     | 46.00     |
| 15 | 48.00     | 40.00     |
| 16 | 52.00     | 36.00     |
| 17 | 60.00     | 56.00     |
| 18 | 60.00     | 52.00     |
| 19 | 46.00     | 36.00     |
| 20 | 50.00     | 32.00     |
| 21 | 38.00     | 32.00     |
| 22 | 46.00     | 34.00     |
| 22 | 64.00     | 00.35     |

• Eg weight before intervention and three months after intervention among 218 women

#### **Paired Samples Statistics**

|        |               | Mean                | Ν   | Std. Deviation | Std. Error<br>Mean |
|--------|---------------|---------------------|-----|----------------|--------------------|
| Pair 1 | weight before | <mark>54.789</mark> | 218 | 10.9890        | .7443              |
|        | Weight after  | <mark>50.71</mark>  | 218 | 9.606          | .651               |

#### **Paired Samples Test**

|      |                 | Paired I            | Differences |            |                     |                     |       |                  |                   |
|------|-----------------|---------------------|-------------|------------|---------------------|---------------------|-------|------------------|-------------------|
|      |                 |                     |             |            | 95% Confidence      |                     |       |                  |                   |
|      |                 |                     |             |            | Interval of the     |                     |       |                  |                   |
|      |                 |                     | Std.        | Std. Error | Difference          |                     |       |                  | Sig. (2-          |
|      |                 | Mean                | Deviation   | Mean       | Lower               | Upper               | t     | df               | tailed)           |
| Pair | weight before - | 4 0002              |             | 4450       | 2 2022              |                     | 0.160 | 217              | 000               |
| 1    | Weight after    | <mark>4.0803</mark> | 0.5706      | .4450      | <mark>3.2032</mark> | <mark>4.9574</mark> | 9.169 | <mark>217</mark> | <mark>.000</mark> |

- P value = 0.000 (p < 0.001) → significant → reject the null → accept the hypothesis</li>
- There a statistically significant difference in weight before and after the intervention with a mean difference = 4.08 and 95%CI = 3.20 to 4.95



#### **Paired Samples Test**

|      |                 | Paired Differences  |           |            |                     |                     |       |                  |                   |
|------|-----------------|---------------------|-----------|------------|---------------------|---------------------|-------|------------------|-------------------|
|      |                 |                     |           |            | 95% Confidence      |                     |       |                  |                   |
|      |                 |                     |           |            | Interval of the     |                     |       |                  |                   |
|      |                 |                     | Std.      | Std. Error | Difference          |                     |       |                  | Sig. (2-          |
|      |                 | Mean                | Deviation | Mean       | Lower               | Upper               | t     | df               | tailed)           |
| Pair | weight before - | 4 0002              |           | 4450       | 2 2022              |                     | 0.160 | 217              | 000               |
| 1    | Weight after    | <mark>4.0803</mark> | 0.5706    | .4450      | <mark>3.2032</mark> | <mark>4.9574</mark> | 9.169 | <mark>217</mark> | <mark>.000</mark> |

• Before conducting the test check the normality of the differences

#### Test statistic

#### Doing a paired t test

$$t = \frac{\text{mean difference}}{\text{SE(mean difference)}} = \frac{\overline{d}}{\sqrt{\frac{\text{SD}^2}{n}}}$$

where if  $x_{i1} - x_{i2} = d_i$  then the mean of the difference  $d_i$  is  $\bar{d}$ ,  $SD^2$  is the standard deviation of the differences, *n* is the sample size.

t follows a t distribution with n - 1 degrees of freedom.

95% CI for the mean difference

mean difference  $\pm t_{n-1}SE(mean difference)$ 

$$=\overline{d} - t_{n-1}\sqrt{\frac{SD^2}{n}} \text{ to } \overline{d} + t_{n-1}\sqrt{\frac{SD^2}{n}}$$

where  $t_{n-1}$  is the 2-tailed 5% point of the t distribution with n-1 degrees of freedom which is obtained from tables or a statistical program.

### 1 sample T test

- to compare mean of a group with a reference mean ( may be the population mean)
- You have data for one group only

• Assumption : Data are normally distributed.

- It answers questions like :
- Is the hemoglobin level of children in a refugee camp is different from that of the children general population (the reference normal value)

- Is weight of babies in a conflict area is different from the reference weight of the population (babies)
- Is diastolic BP of health care workers is different from t that of the general population

- We have one sample  $\rightarrow$  obtain mean
- We have the reference value (mean) of the population (from text books, previous research, governmental data, etc)

• Compare the two means

- Eg compare if the weight of a 66 female students is different from the mean of the population which is 50 kg?
- Data was collected from the 280 female students
- Hypothesis: there is difference  $(\mu \neq 50)$
- Null: they are equal  $(\mu = 50)$

|    | 🖋 weight |  |  |  |  |  |  |
|----|----------|--|--|--|--|--|--|
|    | <u>v</u> |  |  |  |  |  |  |
| 1  | 72.00    |  |  |  |  |  |  |
| 2  | 62.00    |  |  |  |  |  |  |
| 3  | 64.00    |  |  |  |  |  |  |
| 4  | 60.00    |  |  |  |  |  |  |
| 5  | 38.00    |  |  |  |  |  |  |
| 6  | 68.00    |  |  |  |  |  |  |
| 7  | 40.00    |  |  |  |  |  |  |
| 8  | 36.00    |  |  |  |  |  |  |
| 9  | 52.00    |  |  |  |  |  |  |
| 10 | 54.00    |  |  |  |  |  |  |
| 11 | 52.00    |  |  |  |  |  |  |
| 12 | 44.00    |  |  |  |  |  |  |
| 13 | 38.00    |  |  |  |  |  |  |
| 14 | 44.00    |  |  |  |  |  |  |
| 15 | 42.00    |  |  |  |  |  |  |
| 16 | 52.00    |  |  |  |  |  |  |
| 17 | 60.00    |  |  |  |  |  |  |
| 18 | 60.00    |  |  |  |  |  |  |
| 19 | 46 00    |  |  |  |  |  |  |

• Eg compare if the weight of a 66 female students is different from the mean of the population which is 50 kg

| One-Sample Statistics |    |         |           |                 |  |  |  |
|-----------------------|----|---------|-----------|-----------------|--|--|--|
|                       |    |         | Std.      |                 |  |  |  |
|                       | Ν  | Mean    | Deviation | Std. Error Mean |  |  |  |
| weight                | 66 | 51.0303 | 8.98712   | 1.10624         |  |  |  |

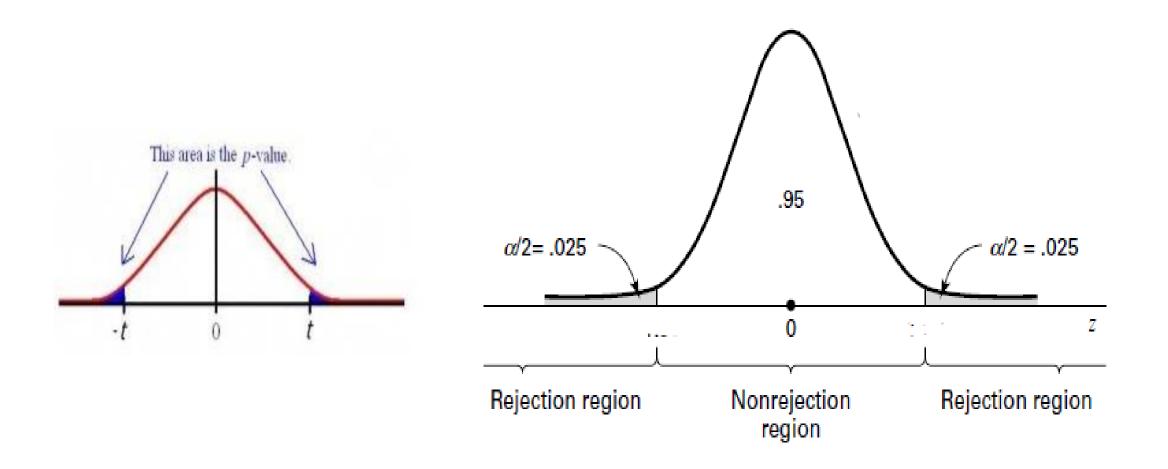
| One-Sample Test |                 |    |          |            |                                |        |  |  |
|-----------------|-----------------|----|----------|------------|--------------------------------|--------|--|--|
|                 | Test Value = 50 |    |          |            |                                |        |  |  |
|                 |                 |    |          |            | 95% Confidence Interval of the |        |  |  |
|                 |                 |    | Sig. (2- | Mean       | Difference                     |        |  |  |
|                 | t               | dſ | tailed)  | Difference | Lower                          | Upper  |  |  |
| weight          | .931            | 65 | .355     | 1.03030    | -1.1790                        | 3.2396 |  |  |

- Mean population = 50
- Mean sample= 51.03
- P value =0.335 $\rightarrow$  no significant difference  $\rightarrow$  NO difference
- Mean difference= 1.03 (95%CI -1.179 , 3.239).
- 95% CI of the difference include ZERO  $\rightarrow$  not SIG  $\rightarrow$  NO difference
- Accept the null  $\rightarrow$  Mean of the group = population mean

• Test statistic

$$t = \frac{\mathbf{x} - \mu}{\frac{S}{\sqrt{n}}}$$

### **P** values


- What is a P value?
- A P value is a probability, and therefore lies between 0 and 1
- It comes from a statistical test that is testing a particular null hypothesis
- It expresses the weight of evidence in favor of or against the stated null hypothesis
- Precise definition: P value is the probability, given that the null hypothesis is true, 0.05 or 5% is commonly used as a cut- off, such that if the observed P is less than this (P <0.05) we consider that there is good evidence that the null hypothesis is not true. This is directly related to the type 1 error
- P <0.05 is described as statistically significant and P ≥0.05 is described as not statistically significant

#### P values

- Large samples are more likely to show a significant difference (small p value)
- it is possible for data to show a statistically significant result when the size of the effect is too small to be clinically important

# •Statistical significance does not mean clinical significance

### Test statistic and rejection region and non rejection region



# Test statistic and rejection region and non rejection region

• The figure below shows a t-distribution with **30** degrees of freedom and alpha = 0.05

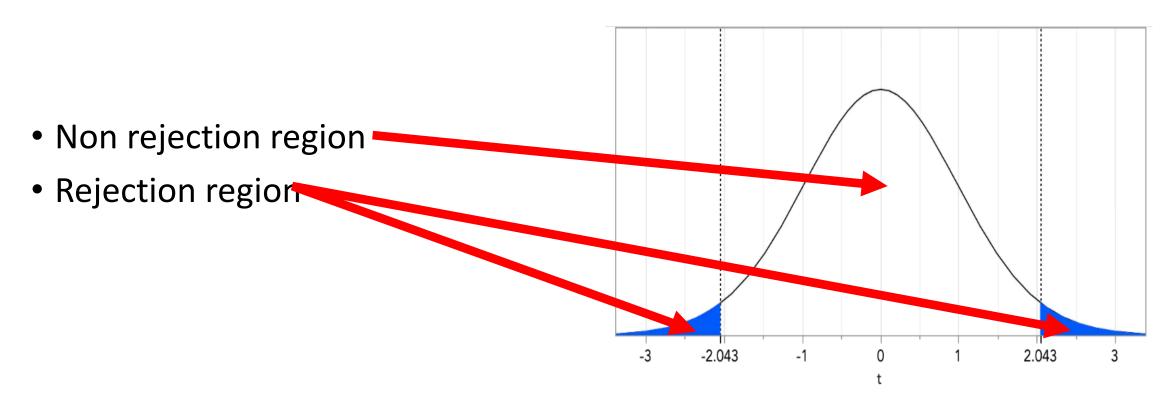



Figure 6: t-distribution with 30 degrees of freedom and  $\alpha = 0.05$ 

|                                              | the tane |   |
|----------------------------------------------|----------|---|
| <ul> <li>For example the computed</li> </ul> | df<br>1  | 0 |
| + to at was 2 112 and the                    | 2        | 0 |
| t test was 2.443 and the                     | 3        | 0 |
| df =20                                       | 4        | 0 |
| ui –20                                       | 5        | 0 |
|                                              | 6        | 0 |
|                                              | 7        | 0 |
|                                              | 8        | 0 |
|                                              | 9        | 0 |
| <ul> <li>the critical value</li> </ul>       | 10       | 0 |
|                                              | 11       | 0 |
| from the table =2.086                        | 12       | 0 |
|                                              | 13       | 0 |
|                                              | 14       | 0 |
| If the computed scritical ->                 | 15       | 0 |
| If the computed > critical $\rightarrow$     | 16       | 0 |
| Reject the null (p is sig)                   | 17       | 0 |
| Neject the hun (p is sig)                    | 18       | 0 |
|                                              | 40       | 0 |

In this case our computed t is > Than the critical  $\rightarrow$  p < 0.05

| two-tails | 1.00  | 0.50  | 0.40  | 0.30  | 0.20  | 0.10  | 0.05  | 0.02  | 0.01  | 0.002  | 0.001  |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
| df        |       |       |       |       |       |       |       |       |       |        |        |
| 1         | 0.000 | 1.000 | 1.376 | 1.963 | 3.078 | 6.314 | 12.71 | 31.82 | 63.66 | 318.31 | 636.62 |
| 2         | 0.000 | 0.816 | 1.061 | 1.386 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | 22.327 | 31.599 |
| 3         | 0.000 | 0.765 | 0.978 | 1.250 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 10.215 | 12.924 |
| 4         | 0.000 | 0.741 | 0.941 | 1.190 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | 7.173  | 8.610  |
| 5         | 0.000 | 0.727 | 0.920 | 1.156 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | 5.893  | 6.869  |
| 6         | 0.000 | 0.718 | 0.906 | 1.134 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 | 5.208  | 5.959  |
| 7         | 0.000 | 0.711 | 0.896 | 1.119 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 | 4.785  | 5.408  |
| 8         | 0.000 | 0.706 | 0.889 | 1.108 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 | 4.501  | 5.041  |
| 9         | 0.000 | 0.703 | 0.883 | 1.100 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 | 4.297  | 4.781  |
| 10        | 0.000 | 0.700 | 0.879 | 1.093 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 | 4.144  | 4.587  |
| 11        | 0.000 | 0.697 | 0.876 | 1.088 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 | 4.025  | 4.437  |
| 12        | 0.000 | 0.695 | 0.873 | 1.083 | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 | 3.930  | 4.318  |
| 13        | 0.000 | 0.694 | 0.870 | 1.079 | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 | 3.852  | 4.221  |
| 14        | 0.000 | 0.692 | 0.868 | 1.076 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 | 3.787  | 4.140  |
| 15        | 0.000 | 0.691 | 0.866 | 1.074 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | 3.733  | 4.073  |
| 16        | 0.000 | 0.690 | 0.865 | 1.071 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 | 3.686  | 4.015  |
| 17        | 0.000 | 0.689 | 0.863 | 1.069 | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 | 3.646  | 3.965  |
| 18        | 0.000 | 0.688 | 0.862 | 1.067 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 | 3.610  | 3.922  |
| 19        | 0.000 | 0.688 | 0.861 | 1.066 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | 3.579  | 3.883  |
| 20        | 0.000 | 0.687 | 0.860 | 1.064 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | 3.552  | 3.850  |
| 21        | 0.000 | 0.686 | 0.859 | 1.063 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 | 3.527  | 3.819  |
| 22        | 0.000 | 0.686 | 0.858 | 1.061 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 | 3.505  | 3.792  |
| 23        | 0.000 | 0.685 | 0.858 | 1.060 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | 3.485  | 3.768  |
| 24        | 0.000 | 0.685 | 0.857 | 1.059 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 | 3.467  | 3.745  |
| 25        | 0.000 | 0.684 | 0.856 | 1.058 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | 3.450  | 3.725  |
| 26        | 0.000 | 0.684 | 0.856 | 1.058 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 | 3.435  | 3.707  |
|           |       |       |       |       |       |       |       |       |       |        |        |

- 1.00 0.50 0.40 0.30 0.20 0.10 0.05 0.02 0.01 0.002 0.001 two-tails df 0.000 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.31 636.62 0.000 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 22.327 31.599 0.765 2.353 3.182 10.215 12.924 3 0.000 0.978 1.250 1.638 4.541 5.841 0.741 0.941 1.190 1.533 2.132 2.776 3,747 4.604 7.173 8.610 0.000 5 0.000 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 5.893 6.869 6 0.000 0.718 0.906 1.134 1.943 5.208 5.959 1.440 2.447 3.143 3,707 7 0.711 4.785 5.408 0.000 0.896 1.119 1.415 1.895 2.365 2.998 3,499 8 5.041 0.000 0.706 0.889 1,108 1.397 1.860 2.306 2.896 3.355 4.501 9 0.000 0.703 0.883 1,100 1.383 1.833 2.262 2.821 3.250 4.297 47 01 4.587 0.879 4.144 10 0.700 1.093 1.812 2.228 2.764 3.169 0.000 1.372 3.106 11 0.000 0.697 0.876 1.088 1.363 1.796 2.201 2.718 4.437 .25 12 3.930 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 4.318 0.000 13 0.694 0.870 1.079 1.771 2.160 2.650 2 3.852 4.221 0.000 1.350 J12 2.977 14 0.000 0.692 0.868 1.076 1.345 1.761 2.145 2.624 3.787 4.140 15 0.000 0.691 0.866 1.074 1.753 2.131 2 JU2 2.947 3.733 4.073 1.341 16 2.120 2.583 0.690 4.015 0.865 1.071 1.337 1.746 2.921 3.686 0.000 17 3.965 0.000 0.689 0.863 1.069 1.333 2.110 2.567 2.898 3.646 1.740 18 0.000 0.688 0.862 1.067 1.330 1.734 2,101 2.552 2.878 3.610 3.922 19 0.000 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.579 3.883 20 1.725 2.086 0.000 0.687 0.860 1.064 1.325 2.528 2.845 3.552 3.850 21 0.000 0.686 1.063 1.721 3.527 3.819 0.859 1.323 2.080 2.518 2.831 22 0.000 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.505 3.792 23 0.000 0.685 0.858 1.714 2.069 2.500 2.807 3.768 1.060 1.319 3.485 24 0.000 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.467 3.745 25 0.000 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.450 3.725 26 0.684 0.000 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.435 3.707
- For example the computed
- t statistic was 1.433 and the
- df =16

- the critical value
- from the table =2.120
- If the computed > critical →
   Reject the null (p is sig)
- In this case our computed t is< than the critical  $\rightarrow$  p >0.05 (not sig.)